Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
J Neuroimmune Pharmacol ; 19(1): 12, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536552

RESUMO

Autism spectrum disorder (ASD) is a neurological disorder associated with brain inflammation. The underlying mechanisms could be attributed to the activation of PI3K signaling in the inflamed brain of ASD. Multiple studies highlight the role of GRPR in regulating ASD like abnormal behavior and enhancing the PI3K signaling. However, the molecular mechanism by which GRPR regulates PI3K signaling in neurons of individuals with ASD is still unclear. In this study, we utilized a maternal immune activation model to investigate the effects of GRPR on PI3K signaling in the inflamed brain of ASD mice. We used HT22 cells with and without GRPR to examine the impact of GRP-GRPR on the PI3K-AKT pathway with IL-6 treatment. We analyzed a dataset of hippocampus samples from ASD mice to identify hub genes. Our results demonstrated increased expression of IL-6, GRPR, and PI3K-AKT signaling in the hippocampus of ASD mice. Additionally, we observed increased GRPR expression and PI3K-AKT/mTOR activation in HT22 cells after IL-6 treatment, but decreased expression in HT22 cells with GRPR knockdown. NetworkAnalyst identified GSK-3ß as the most crucial gene in the PI3K-AKT/mTOR pathway in the hippocampus of ASD. Furthermore, we found that IL-6 upregulated the expression of GSK-3ß in HT22 cells by upregulating GRP-GRPR. Our findings suggest that IL-6 can enhance the activation of PI3K-AKT/mTOR-GSK-3ß in hippocampal neurons of ASD mice by upregulating GRPR.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Hipocampo , Interleucina-6 , Animais , Camundongos , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Neurônios , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Receptores da Bombesina/metabolismo
2.
Semin Nucl Med ; 54(2): 256-269, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342656

RESUMO

The gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in breast cancer, making it a promising target for both imaging and therapy within a theranostic framework. Various radioligands targeting GRPR have undergone investigation in preclinical and clinical studies related to breast cancer. This systematic scoping review aimed to assess the current evidence on GRPR-targeted radioligands for diagnostic and therapeutic applications in breast cancer. The methodology followed the PRISMA-ScR protocol. The literature search was conducted in September 2023 and encompassed MEDLINE, Embase, Cochrane, and Scopus databases. We included original peer-reviewed studies focused on breast cancer patients or in vivo breast cancer models. Two reviewers performed the study selection process independently. Data were extracted, synthesized, and categorized into preclinical and clinical studies, further subdivided based on radioligand properties. A total of 35 original studies were included in the review, with three of them evaluating therapeutic outcomes. The results indicated that GRPR-radioantagonists are superior to GRPR-agonists, exhibiting preferable in vivo stability, rapid, specific tumor targeting, and enhanced retention. Both preclinical and clinical evaluations demonstrated renal excretion and high uptake in normal GRPR-expressing tissue, primarily the pancreas. A significant positive correlation was observed between GRPR and estrogen-receptor expression. In the clinical setting, GRPR-radioligands effectively detected primary tumors and, to a lesser extent, lymph node metastases. Moreover, GRPR-targeted radioantagonists successfully identified distant metastases originating from various sites in advanced metastatic disease, strongly correlated with positive estrogen receptor expression. Preclinical therapeutic evaluation of GRPR-radioligands labeled with lutetium-177 showed promising tumor responses, and none of the studies reported any observed or measured side effects, indicating a safe profile. In conclusion, the evidence presented in this review indicates a preference for GRPR-targeted antagonists over agonists, owing to their superior kinetics and promising diagnostic potential. Clinical assessments suggested diagnostic value for GRPR-targeted theranostics in breast cancer patients, particularly those with high estrogen receptor expression. Nevertheless, in the therapeutic clinical context, paying attention to the radiation dose administered to the pancreas and kidneys is crucial.


Assuntos
Neoplasias da Mama , Receptores da Bombesina , Humanos , Feminino , Receptores da Bombesina/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Neoplasias da Mama/patologia , Medicina de Precisão , Receptores de Estrogênio
3.
Int J Med Sci ; 21(2): 357-368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169666

RESUMO

This study investigated the potential role of the mouse homolog of bombesin receptor-activated protein (BRAP) in imiquimod (IMQ) induced psoriasis - like skin inflammation. The expression of both human BRAP, encoded by C6orf89, and its mouse homolog, encoded by BC004004, has been found to be expressed abundantly in the keratinocytes. BC004004 knockout mice (BC004004-/-) were topically treated with IMQ daily for 7 days to test whether they were more vulnerable to psoriasis - like inflammation. We found that those mice exhibited an altered pattern of inflammation process compared to isogenic wild type control mice (BC004004+/+). BC004004-/- mice developed skin lesions with earlier and more acute onset, as well as a quicker remission. The cytokines related to pathogenesis of psoriasis also exhibited different expression patterns in IMQ treated BC004004-/- mice. On day 4 of IMQ treatment, BC004004-/- mice exhibited a higher expression level of IL-17A compared to BC004004+/+ mice, suggesting a more robust activation of Th17 cells in the knockout mice. The serum level of thymic stromal lymphopoietin (TSLP), one of the keratinocyte derived cytokines, was also increased in BC004004-/- mice and reached its peak on day 4. Knockdown of BRAP in cultured human keratinocyte-derived HaCaT cells by siRNA silencing led to increased release of TSLP. Our data suggest that the elevated of level of TSLP released from keratinocytes due to BRAP deficiency might mediate the crosstalk between the epidermal cells and immune cells and thereby contributing to the altered pathological changes observed in psoriasis - like skin lesion in knockout mice.


Assuntos
Psoríase , Receptores da Bombesina , Camundongos , Humanos , Animais , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Queratinócitos/metabolismo , Imiquimode/metabolismo , Inflamação/patologia , Citocinas/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Pele/patologia , Camundongos Endogâmicos BALB C
4.
Cancer Imaging ; 24(1): 19, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38279185

RESUMO

GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptores da Bombesina/metabolismo , Bombesina/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia
5.
Int J Biol Macromol ; 255: 127843, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956803

RESUMO

Bombesin is an endogenous peptide involved in a wide spectrum of physiological activities ranging from satiety, control of circadian rhythm and thermoregulation in the central nervous system, to stimulation of gastrointestinal hormone release, activation of macrophages and effects on development in peripheral tissues. Actions of the peptide are mediated through the two high affinity G-protein coupled receptors BB1R and BB2R. Under pathophysiological conditions, these receptors are overexpressed in many different types of tumors, such as prostate cancer, breast cancer, small and non-small cell lung cancer and pancreatic cancer. This observation has been used for designing cell markers, but it has not been yet exploited for therapeutical purposes. Despite the enormous biological interest of the peptide, little is known about the stereochemical features that contribute to their activity. On the one hand, mutagenesis studies identified a few receptor residues important for high bombesin affinity and on the other, a few studies focused on the relevance of diverse residues of the peptide for receptor activation. Models of the peptide bound to BB1R and BB2R can be helpful to improve our understanding of the stereochemical features granting bombesin activity. Accordingly, the present study describes the computational process followed to construct such models by means of Steered Molecular Dynamics, using models of the peptide and its receptors. Present results provide new insights into the structure-activity relationships of bombesin and its receptors, as well as render an explanation for the differential binding affinity observed towards BB1R and BB2R. Finally, these models can be further exploited to help for designing novel small molecule peptidomimetics with improved pharmacokinetics profile.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Masculino , Humanos , Bombesina/química , Bombesina/metabolismo , Receptores da Bombesina/metabolismo , Peptídeos
6.
Hepatology ; 79(2): 392-408, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37409771

RESUMO

BACKGROUND AND AIMS: The common characteristics of alcohol-associated liver injury (ALI) include abnormal liver function, infiltration of inflammatory cells, and generation of oxidative stress. The gastrin-releasing peptide receptor (GRPR) is activated by its neuropeptide ligand, gastrin-releasing peptide (GRP). GRP/GRPR appears to induce the production of cytokines in immune cells and promotes neutrophil migration. However, the effects of GRP/GRPR in ALI are unknown. APPROACH AND RESULTS: We found high GRPR expression in the liver of patients with alcohol-associated steatohepatitis and increased pro-GRP levels in peripheral blood mononuclear cells of these patients compared with that of the control. Increased expression of GRP may be associated with histone H3 lysine 27 acetylation induced by alcohol, which promotes the expression of GRP and then GRPR binding. Grpr-/- and Grprflox/floxLysMCre mice alleviated ethanol-induced liver injury with relieved steatosis, lower serum alanine aminotransferase, aspartate aminotransferase, triglycerides, malondialdehyde, and superoxide dismutase levels, reduced neutrophil influx, and decreased expression and release of inflammatory cytokines and chemokines. Conversely, the overexpression of GRPR showed opposite effects. The pro-inflammatory and oxidative stress roles of GRPR might be dependent on IRF1-mediated Caspase-1 inflammasome and NOX2-dependent reactive oxygen species pathway, respectively. In addition, we verified the therapeutic and preventive effects of RH-1402, a novel GRPR antagonist, for ALI. CONCLUSIONS: A knockout or antagonist of GRPR during excess alcohol intake could have anti-inflammatory and antioxidative roles, as well as provide a platform for histone modification-based therapy for ALI.


Assuntos
Inflamassomos , Receptores da Bombesina , Humanos , Camundongos , Animais , Receptores da Bombesina/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 1/metabolismo , Leucócitos Mononucleares , Peptídeo Liberador de Gastrina/metabolismo , Etanol , Fígado/metabolismo , Citocinas/metabolismo , Fator Regulador 1 de Interferon/metabolismo
7.
Biochem Pharmacol ; 218: 115901, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084678

RESUMO

The gastrin-releasing peptide receptor (GRPR) binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. In this study, we investigated the therapeutic effect of a novel gastrin-releasing peptide receptor antagonist RH-1402 in hyperuricemia-induced kidney fibrosis and its underlying mechanisms. We conducted enzyme linked immunosorbent assay (ELISA) and immunohistochemical analyses and found that proGRP and GRPR expression levels were significantly increased in patients with hyperuricemic nephropathy (HN) and HN mice. GRPR knockdown significantly attenuated inflammatory and fibrotic responses in adenosine-treated human proximal tubule epithelial cells. GRPR knockout or GRPR conditional knockout in renal tubular epithelial cells significantly alleviated the decline in renal function and fibrosis in HN mice in vivo. RNA-seq and String database analysis revealed that GRP/GRPR promoted HN by suppressing the ABCG2/PDZK1 and increasing TGF-ß/Smad3 levels by activating the NF-κB pathway. Overexpression of GRPR increased TGF-ß/Smad3 levels, where as it reduced ABCG2/PDZK1 levels in adenosine-treated HK2 cells, which was reversed by the NF-κB inhibitor. Furthermore, we evaluated the therapeutic effects of the novel GRPR inhibitor RH-1402 on hyperuricaemia-induced renal injury and evaluated the inflammatory and fibrosis responses in vivo and in vitro. Pre-treatment with RH-1402 attenuated hyperuricaemia-induced renal injury, restored renal function, and suppressed renal inflammation and fibrosis. Taken together, GRPR enhances hyperuricaemia-induced tubular injury, inflammation, and renal fibrosis via ABCG2-dependent mechanisms and may serve as a promising therapeutic target for HN treatment.


Assuntos
Hiperuricemia , Nefropatias , Nefrite , Animais , Humanos , Camundongos , Adenosina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Fibrose , Hiperuricemia/tratamento farmacológico , Inflamação , Nefropatias/etiologia , Proteínas de Neoplasias/metabolismo , Nefrite/etiologia , NF-kappa B/metabolismo , Receptores da Bombesina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
8.
Mol Pharm ; 20(12): 6463-6473, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37978936

RESUMO

The gastrin-releasing peptide receptor (GRPr) is overexpressed in various cancer types including prostate and breast carcinomas, making it an attractive target for molecular imaging and therapy. In this work, we designed a novel GRPr antagonistic probe comprising metal chelator NODIA-Me. This 1,4,7-triazacyclononane-based chelator forms positively charged metal complexes due to its neutral methylimidazole arms. Because a positive charge at the N-terminus of GRPr conjugates is responsible for high receptor affinity as exemplified by the current gold standard DOTA-RM2, we investigated if a positively charged radiometal complex can be used as a pharmacokinetic modifier to also produce high-affinity GRPr conjugates. In this respect, the bioconjugate NODIA-Me-Ahx-JMV594 was prepared by a combination of solid-phase peptide synthesis and solution-based reactions in a 94% yield. Radiolabeling provided the 68Ga-labeled conjugate in radiochemical yields of >95% and radiochemical purities of >98% with mean molar activities of Am ∼17 MBq nmol-1. The competitive GRPr affinity of the metal-free and 69/71Ga-labeled conjugate was determined to be IC50 = 0.41 ± 0.06 and 1.45 ± 0.06 nM, respectively. The metal-free GRPr antagonist DOTA-RM2 and its corresponding 69/71Ga complex had IC50 values of 1.42 ± 0.07 and 0.98 ± 0.19 nM, respectively. Small-animal PET imaging of mice bearing GRPr(+) PC-3 tumors revealed high radioactivity accumulation in the tumors and in the pancreas as an organ with high levels of GRPr expression. These findings were corroborated by the corresponding ex vivo biodistribution data, in which the tumors and the pancreas exhibited the highest radioactivity accumulation. By coinjection of an excess of NODIA-Me-Ahx-JMV594, uptake in the tumors and GRPr(+) organs was significantly reduced, confirming specific receptor-mediated uptake. The estrogen receptor-positive tumor of a female breast cancer patient was clearly visualized by PET imaging using 68Ga-labeled NODIA-Me-Ahx-JMV594. To summarize, the positive charge at the N-terminus of the conjugate induced by the Ga(NODIA-Me) complex resulted in high GRPr affinity comparable to that of the potent antagonist DOTA-RM2. The conjugate NODIA-Me-Ahx-JMV594 is a promising probe for imaging of GRPr tumors that warrants further evaluation in larger patient cohorts as well as in combination with other radiometals.


Assuntos
Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Receptores da Bombesina/metabolismo , Radioisótopos de Gálio , Distribuição Tecidual , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Quelantes/química , Tomografia por Emissão de Pósitrons/métodos , Bombesina/farmacocinética
9.
Eur J Pharmacol ; 960: 176147, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37871763

RESUMO

Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.


Assuntos
Furocumarinas , Receptores da Bombesina , Animais , Camundongos , Furocumarinas/farmacologia , Furocumarinas/uso terapêutico , Peptídeo Liberador de Gastrina/farmacologia , Peptídeo Liberador de Gastrina/fisiologia , Camundongos Endogâmicos C57BL , Prurido/tratamento farmacológico , Prurido/induzido quimicamente , Receptores da Bombesina/metabolismo , Medula Espinal
10.
FEBS Lett ; 597(21): 2626-2642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37715941

RESUMO

Both bombesin receptor-activated protein (BRAP) and its mouse homolog have been found to be expressed in bronchial epithelia but with unclear functions. Using electron microscopy combined with histological assays, we found that BRAP homolog deficiency in mice led to abnormal tracheal cilia. Rab-3A-interacting protein (Rabin8), a protein that might play a role in cilia development, was screened by yeast two-hybrid and further verified to have interaction with human BRAP by co-immunoprecipitation and pulldown assays. The expression levels of Rabin8, together with acetylated α-tubulin, a marker of cilia, were either downregulated by knockdown of BRAP or upregulated by overexpression of BRAP in cultured immortalized human bronchial epithelial cells. These results reveal a role for BRAP in airway cilia formation.


Assuntos
Cílios , Receptores da Bombesina , Animais , Humanos , Camundongos , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/metabolismo , Camundongos Knockout , Proteínas/metabolismo , Receptores da Bombesina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
Pituitary ; 26(5): 597-610, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37642928

RESUMO

PURPOSE: Cushing's disease (CD) results from autonomous adrenocorticotropic hormone (ACTH) secretion by corticotroph adenomas, leading to excessive cortisol production, ultimately affecting morbidity and mortality. Pasireotide is the only FDA approved tumor directed treatment for CD, but it is effective in only about 25% of patients, and is associated with a high rate of hyperglycemia. Neuromedin B (NMB), a member of the bombesin-like peptide family, regulates endocrine secretion and cell proliferation. Here, we assessed NMB and NMB receptor (NMBR) expression in human corticotroph adenomas and the effects of NMBR antagonist PD168368 on murine and human corticotroph tumors. METHODS: To investigate NMB and NMBR expression, real-time qPCR and immunostaining on human pathological specimens of corticotroph, non-functional and somatotroph adenomas were performed. The effects of PD168368 on hormone secretion and cell proliferation were studied in vitro, in vivo and in seven patient-derived corticotroph adenoma cells. NMB and NMBR were expressed in higher extent in human corticotroph adenomas compared with non-functional or somatotroph adenomas. RESULTS: In murine AtT-20 cells, PD168368 reduced proopiomelanocortin (Pomc) mRNA/protein expression and ACTH secretion as well as cell proliferation. In mice with tumor xenografts, tumor growth, ACTH and corticosterone were downregulated by PD168368. In patient-derived adenoma cells, PD168368 reduced POMC mRNA expression in four out of seven cases and ACTH secretion in two out of five cases. A PD168368-mediated cyclin E suppression was also identified in AtT-20 and patient-derived cells. CONCLUSION: NMBR antagonist represents a potential treatment for CD and its effect may be mediated by cyclin E suppression.


Assuntos
Adenoma Hipofisário Secretor de ACT , Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , Hipersecreção Hipofisária de ACTH , Animais , Humanos , Camundongos , Adenoma Hipofisário Secretor de ACT/tratamento farmacológico , Adenoma Hipofisário Secretor de ACT/metabolismo , Adenoma/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Ciclina E , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Hipersecreção Hipofisária de ACTH/genética , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores da Bombesina/metabolismo , Receptores Acoplados a Proteínas G , RNA Mensageiro/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
Eur J Nucl Med Mol Imaging ; 50(13): 3851-3861, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37584725

RESUMO

INTRODUCTION: NeoB and RM2 are the most investigated gastrin-releasing peptide receptor (GRPR)-targeting radiotracers in preclinical and clinical studies. Therefore, an extensive side-by-side comparison of the two radiotracers is valuable to demonstrate whether one has advantages over the other. Accordingly, this study aims to compare the in vitro and in vivo characteristics of radiolabeled NeoB and RM2 to guide future clinical studies. METHOD: The stability of the radiolabeled GRPR analogs was determined in phosphate buffered saline (PBS), and commercially available mouse and human serum. Target affinity was determined by incubating human prostate cancer PC-3 cells with [177Lu]Lu-NeoB or [177Lu]Lu-RM2, + / - increasing concentrations of unlabeled NeoB, RM2, or Tyr4-bombesin (BBN). To determine uptake and specificity cells were incubated with [177Lu]Lu-NeoB or [177Lu]Lu-RM2 + / - Tyr4-BBN. Moreover, in vivo studies were performed to determine biodistribution and pharmacokinetics. Finally, radiotracer binding to various GRPR-expressing human cancer tissues was investigated. RESULTS: Both radiotracers demonstrated high stability in PBS and human serum, but stability in mouse serum decreased substantially over time. Moreover, both radiotracers demonstrated high GRPR affinity and specificity, but a higher uptake of [177Lu]Lu-NeoB was observed in in vitro studies. In vivo, no difference in tumor uptake was seen. The most prominent difference in uptake in physiological organs was observed in the GRPR-expressing pancreas; [177Lu]Lu-RM2 had less pancreatic uptake and a shorter pancreatic half-life than [177Lu]Lu-NeoB. Furthermore, [177Lu]Lu-RM2 presented with a lower tumor-to-kidney ratio, while the tumor-to-blood ratio was lower for [177Lu]Lu-NeoB. The autoradiography studies revealed higher binding of radiolabeled NeoB to all human tumor tissues. CONCLUSION: Based on these findings, we conclude that the in vivo tumor-targeting capability of radiolabeled NeoB and RM2 is similar. Additional studies are needed to determine whether the differences observed in physiological organ uptakes, i.e., the pancreas, kidneys, and blood, result in relevant differences in organ absorbed doses when the radiotracers are applied for therapeutic purposes.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Animais , Humanos , Masculino , Camundongos , Transporte Biológico , Bombesina , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Receptores da Bombesina/metabolismo , Distribuição Tecidual
13.
Food Chem Toxicol ; 179: 113998, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37604300

RESUMO

Formaldehyde (FA), which is known as an air pollutant, has been proven to induce male infertility. However, the underlying mechanism of FA-induced male infertility remains elusive. In this study, 24 male SD rats were exposed to different levels of FA (0, 0.5, 2.46, and 5 mg/m3) for eight consecutive weeks. Through HE staining and sperm smear, we observed that FA exposure resulted in spermatogenic injury and the sperm quality decreased in rats. The qRT-PCR and Western blot analysis further revealed that GRPR was down-regulated in testicular tissues of FA-exposed rats as well as primary spermatogenic cells. Meanwhile, ZDOCK uncovered an interaction between GRPR and PLCß. In addition, the CCK8, Fluo 3-AM and Flow cytometry results showed that FA exposure suppressed the expression of GRPR, PLCß and IP3R, consequently reducing the Ca2+ concentration in spermatogenic cells, inducing apoptosis and inhibiting proliferation of spermatogenic cells. Moreover, rescue experiments confirmed that promoting GRPR could improve intracellular Ca2+ concentration by upregulating PLCß and IP3R, partially reducing the apoptosis and promoting the proliferation of FA-treated spermatogenic cells. These findings revealed that GRPR participates in spermatogenesis through Ca2+ mediated by the PLCß/IP3R signaling pathway in FA-exposed rats.


Assuntos
Formaldeído , Infertilidade Masculina , Sêmen , Espermatogênese , Animais , Masculino , Ratos , Regulação para Baixo , Formaldeído/efeitos adversos , Formaldeído/toxicidade , Fosfolipase C beta , Ratos Sprague-Dawley , Transdução de Sinais , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores da Bombesina/metabolismo
14.
Eur J Nucl Med Mol Imaging ; 50(13): 4087-4095, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37555901

RESUMO

PURPOSE: There are image interpretation criteria to standardize reporting prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET). As up to 10% of prostate cancer (PC) do not express PSMA, other targets such as gastrin-releasing peptide receptor (GRPR) are evaluated. Research on GRPR-targeted imaging has been slowly increasing in usage at staging and biochemical recurrence (BCR) of PC. We therefore propose a modification of the Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE) criteria (mPROMISE) for GRPR-targeted PET. METHODS: [68 Ga]Ga-RM2 PET data from initially prospective studies performed at our institution were retrospectively reviewed: 44 patients were imaged for staging and 100 patients for BCR PC. Two nuclear medicine physicians independently evaluated PET according to the mPROMISE criteria. A third expert reader served as standard reference. Interreader reliability was computed for GRPR expression, prostate bed (T), lymph node (N), skeleton (Mb), organ (Mc) metastases, and final judgment of the scan. RESULTS: The interrater reliability for GRPR PET at staging was moderate for GRPR expression (0.59; 95% confidence interval [CI] 0.40, 0.78), substantial for T-stage (0.78; 95% CI 0.63, 0.94), and almost perfect for N-stage (0.97; 95% CI 0.92, 1.00) and final judgment (0.92; 95% CI 0.82, 1.00). The interreader agreement at BCR showed substantial agreement for GRPR expression (0.70; 95% CI 0.59, 0.81) and final judgment (0.65; 95% CI 0.53, 0.78), while almost perfect agreement was seen across the major categories (T, N, Mb, Mc). Acceptable performance of the mPROMISE criteria was found for all subsets when compared to the standard reference. CONCLUSION: Interpreting GRPR-targeted PET using the mPROMISE criteria showed its reliability with substantial or almost perfect interrater agreement across all major categories. The proposed modification of the PROMISE criteria will aid clinicians in decreasing the level of uncertainty, and clinical trials to achieve uniform evaluation, reporting, and comparability of GRPR-targeted PET. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT03113617 and NCT02624518.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Masculino , Humanos , Receptores da Bombesina/metabolismo , Estudos Prospectivos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/patologia , Imagem Molecular , Radioisótopos de Gálio , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
15.
Biomolecules ; 13(7)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37509170

RESUMO

Radiolabeled gastrin-releasing peptide receptor (GRPR) antagonists have shown great promise for the theranostics of prostate cancer; however, their suboptimal metabolic stability leaves room for improvements. It was recently shown that the replacement of Gly11 with Sar11 in the peptidic [D-Phe6,Leu13-NHEt,des-Met14]BBN(6-14) chain stabilized the [99mTc]Tc-DB15 radiotracer against neprilysin (NEP). We herein present DOTAGA-PEG2-(Sar11)RM26 (AU-RM26-M1), after Gly11 to Sar11-replacement. The impact of this replacement on the metabolic stability and overall biological performance of [111In]In-AU-RM26-M1 was studied using a head-to-head comparison with the unmodified reference [111In]In-DOTAGA-PEG2-RM26. In vitro, the cell uptake of [111In]In-AU-RM26-M1 could be significantly reduced in the presence of a high-excess GRPR-blocker that demonstrated its specificity. The cell uptake of both radiolabeled GRPR antagonists increased with time and was superior for [111In]In-AU-RM26-M1. The dissociation constant reflected strong affinities for GRPR (500 pM for [111In]In-AU-RM26-M1). [111In]In-AU-RM26-M1 showed significantly higher stability in peripheral mice blood at 5 min pi (88 ± 8% intact) than unmodified [111In]In-DOTAGA-PEG2-RM26 (69 ± 2% intact; p < 0.0001). The administration of a NEP inhibitor had no significant impact on the Sar11-compound (91 ± 2% intact; p > 0.05). In vivo, [111In]In-AU-RM26-M1 showed high and GRPR-mediated uptake in the PC-3 tumors (7.0 ± 0.7%IA/g vs. 0.9 ± 0.6%IA/g in blocked mice) and pancreas (2.2 ± 0.6%IA/g vs. 0.3 ± 0.2%IA/g in blocked mice) at 1 h pi, with rapid clearance from healthy tissues. The tumor uptake of [111In]In-AU-RM26-M1 was higher than for [111In]In-DOTAGA-PEG2-RM26 (at 4 h pi, 5.7 ± 1.8%IA/g vs. 3 ± 1%IA/g), concordant with its higher stability. The implanted PC-3 tumors were visualized with high contrast in mice using [111In]In-AU-RM26-M1 SPECT/CT. The Gly11 to Sar11-substitution stabilized [111In]In-DOTAGA-PEG2-(Sar11)RM26 against NEP without negatively affecting other important biological features. These results support the further evaluation of AU-RM26-M1 for prostate cancer theranostics after labeling with clinically relevant radionuclides.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Medicina de Precisão , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores da Bombesina/antagonistas & inibidores , Receptores da Bombesina/metabolismo
16.
EMBO Rep ; 24(10): e56098, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522391

RESUMO

A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.


Assuntos
Receptores da Bombesina , Medula Espinal , Humanos , Receptores da Bombesina/genética , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/metabolismo , Medula Espinal/metabolismo , Ácido Glutâmico/metabolismo , Dopamina/metabolismo , Prurido/genética , Prurido/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
17.
J Proteome Res ; 22(7): 2364-2376, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368948

RESUMO

Bombesin receptor subtype-3 (BRS3) is an orphan G-protein coupled receptor (GPCR) that is involved in a variety of pathological and physiological processes, while its biological functions and underlying regulatory mechanisms remain largely unknown. In this study, a quantitative phosphoproteomics approach was employed to comprehensively decipher the signal transductions that occurred upon intracellular BRS3 activation. The lung cancer cell line H1299-BRS3 was treated with MK-5046, an agonist of BRS3, for different durations. Harvested cellular proteins were digested and phosphopeptides were enriched by immobilized titanium (IV) ion affinity chromatography (Ti4+-IMAC) for label-free quantification (LFQ) analysis. A total of 11,938 phosphopeptides were identified, corresponding to 3,430 phosphoproteins and 10,820 phosphosites. Data analysis revealed that 27 phosphopeptides corresponding to six proteins were involved in the Hippo signaling pathway, which was significantly regulated by BRS3 activation. Verification experiments demonstrated that downregulation of the Hippo signaling pathway caused by BRS3 activation could induce the dephosphorylation and nucleus localization of the Yes-associated protein (YAP), and its association with cell migration was further confirmed by kinase inhibition. Our data collectively demonstrate that BRS3 activation contributes to cell migration through downregulation of the Hippo signaling pathway.


Assuntos
Via de Sinalização Hippo , Receptores da Bombesina , Receptores da Bombesina/metabolismo , Fosfopeptídeos , Transdução de Sinais/fisiologia , Movimento Celular , Fosfoproteínas/metabolismo
18.
J Cell Physiol ; 238(6): 1381-1404, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37186390

RESUMO

Neuromedin B (NMB) and gastrin-releasing peptide (GRP) are the two mammalian analogs in the bombesin peptide family that exert a variety of actions including emotional processing, appetitive behaviors, cognition, and tumor growth. The bombesin-like peptides interact with three receptors: the NMB-preferring bombesin 1 (BB1) receptors, the GRP-preferring bombesin 2 (BB2) receptors and the orphan bombesin 3 (BB3) receptors. Whereas, injection of bombesin into the central amygdala reduces satiety and modulates blood pressure, the underlying cellular and molecular mechanisms have not been determined. As administration of bombesin induces the expression of Fos in the lateral nucleus of the central amygdala (CeL) which expresses BB1 receptors, we probed the effects of NMB on CeL neurons using in vitro and in vivo approaches. We showed that activation of the BB1 receptors increased action potential firing frequency recorded from CeL neurons via inhibition of the inwardly rectifying K+ (Kir) channels. Activities of phospholipase Cß and protein kinase C were required, whereas intracellular Ca2+ release was unnecessary for BB1 receptor-elicited potentiation of neuronal excitability. Application of NMB directly into the CeA reduced blood pressure and heart rate and significantly reduced fear-potentiated startle. We may provide a cellular and molecular mechanism whereby bombesin-like peptides modulate anxiety and fear responses in the amygdala.


Assuntos
Neurocinina B , Peptídeos , Animais , Tonsila do Cerebelo/metabolismo , Bombesina/farmacologia , Bombesina/metabolismo , Medo , Mamíferos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Receptores da Bombesina/metabolismo , Neurocinina B/metabolismo
19.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108559

RESUMO

Angiogenesis-related cell-surface molecules, including integrins, aminopeptidase N, vascular endothelial growth factor, and gastrin-releasing peptide receptor (GRPR), play a crucial role in tumour formation. Radiolabelled imaging probes targeting angiogenic biomarkers serve as valuable vectors in tumour identification. Nowadays, there is a growing interest in novel radionuclides other than gallium-68 (68Ga) or copper-64 (64Cu) to establish selective radiotracers for the imaging of tumour-associated neo-angiogenesis. Given its ideal decay characteristics (Eß+average: 632 KeV) and a half-life (T1/2 = 3.97 h) that is well matched to the pharmacokinetic profile of small molecules targeting angiogenesis, scandium-44 (44Sc) has gained meaningful attention as a promising radiometal for positron emission tomography (PET) imaging. More recently, intensive research has been centered around the investigation of 44Sc-labelled angiogenesis-directed radiopharmaceuticals. Previous studies dealt with the evaluation of 44Sc-appended avb3 integrin-affine Arg-Gly-Asp (RGD) tripeptides, GRPR-selective aminobenzoyl-bombesin analogue (AMBA), and hypoxia-associated nitroimidazole derivatives in the identification of various cancers using experimental tumour models. Given the tumour-related hypoxia- and angiogenesis-targeting capability of these PET probes, 44Sc seems to be a strong competitor of the currently used positron emitters in radiotracer development. In this review, we summarize the preliminary preclinical achievements with 44Sc-labelled angiogenesis-specific molecular probes.


Assuntos
Radioisótopos , Fator A de Crescimento do Endotélio Vascular , Humanos , Estudos de Viabilidade , Bombesina , Receptores da Bombesina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Gálio , Neovascularização Patológica/diagnóstico por imagem
20.
Biomed Pharmacother ; 161: 114497, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933382

RESUMO

The gastrin-releasing peptide receptor (GRPR), a member of the G protein-coupled receptors (GPCRs), binds to ligands such as gastrin-releasing peptide (GRP) and plays a variety of biological roles. GRP/GRPR signalling is involved in the pathophysiological processes of many diseases, including inflammatory diseases, cardiovascular diseases, neurological diseases, and various cancers. In the immune system, the unique function of GRP/GRPR in neutrophil chemotaxis suggests that GRPR can be directly stimulated through GRP-mediated neutrophils to activate selective signalling pathways, such as PI3K, PKC, and MAPK, and participate in the occurrence and development of inflammation-related diseases. In the cardiovascular system, GRP increases intercellular adhesion molecule 1 (ICAM-1) and induces vascular cell adhesion molecule-1 (VCAM-1). GRP activates ERK1/2, MAPK, and AKT, leading to cardiovascular diseases, including myocardial infarction. Central nervous system signal transduction mediated by the GRP/GRPR axis plays a vital role in emotional responses, social interaction, and memory. The GRP/GRPR axis is elevated in various cancers, including lung, cervical, colorectal, renal cell, and head and neck squamous cell carcinomas. GRP is a mitogen in a variety of tumour cell lines. Its precursor, pro-gastrin-releasing peptide (ProGRP), may play an important role as an emerging tumour marker in early tumour diagnosis. GPCRs serve as therapeutic targets for drug development, but their function in each disease remains unclear, and their involvement in disease progression has not been well explored or summarised. This review lays out the above mentioned pathophysiological processes based on previous research conclusions. The GRP/GRPR axis may be a potential target for treating multiple diseases, and the study of this signalling axis is particularly important.


Assuntos
Doenças Cardiovasculares , Receptores da Bombesina , Humanos , Receptores da Bombesina/metabolismo , Peptídeo Liberador de Gastrina , Transdução de Sinais , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...